Description: Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nexdh.1 | |- ( ph -> A. x ph ) |
|
| nexdh.2 | |- ( ph -> -. ps ) |
||
| Assertion | nexdh | |- ( ph -> -. E. x ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nexdh.1 | |- ( ph -> A. x ph ) |
|
| 2 | nexdh.2 | |- ( ph -> -. ps ) |
|
| 3 | 1 2 | alrimih | |- ( ph -> A. x -. ps ) |
| 4 | alnex | |- ( A. x -. ps <-> -. E. x ps ) |
|
| 5 | 3 4 | sylib | |- ( ph -> -. E. x ps ) |