Metamath Proof Explorer


Theorem nexdh

Description: Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002)

Ref Expression
Hypotheses nexdh.1
|- ( ph -> A. x ph )
nexdh.2
|- ( ph -> -. ps )
Assertion nexdh
|- ( ph -> -. E. x ps )

Proof

Step Hyp Ref Expression
1 nexdh.1
 |-  ( ph -> A. x ph )
2 nexdh.2
 |-  ( ph -> -. ps )
3 1 2 alrimih
 |-  ( ph -> A. x -. ps )
4 alnex
 |-  ( A. x -. ps <-> -. E. x ps )
5 3 4 sylib
 |-  ( ph -> -. E. x ps )