Metamath Proof Explorer


Theorem nexmo

Description: Nonexistence implies uniqueness. (Contributed by BJ, 30-Sep-2022) Avoid ax-11 . (Revised by Wolf Lammen, 16-Oct-2022)

Ref Expression
Assertion nexmo
|- ( -. E. x ph -> E* x ph )

Proof

Step Hyp Ref Expression
1 pm2.21
 |-  ( -. ph -> ( ph -> x = y ) )
2 1 alimi
 |-  ( A. x -. ph -> A. x ( ph -> x = y ) )
3 2 alrimiv
 |-  ( A. x -. ph -> A. y A. x ( ph -> x = y ) )
4 3 19.2d
 |-  ( A. x -. ph -> E. y A. x ( ph -> x = y ) )
5 alnex
 |-  ( A. x -. ph <-> -. E. x ph )
6 5 bicomi
 |-  ( -. E. x ph <-> A. x -. ph )
7 df-mo
 |-  ( E* x ph <-> E. y A. x ( ph -> x = y ) )
8 4 6 7 3imtr4i
 |-  ( -. E. x ph -> E* x ph )