Description: Nonexistence implies uniqueness. (Contributed by BJ, 30-Sep-2022) Avoid ax-11 . (Revised by Wolf Lammen, 16-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nexmo | |- ( -. E. x ph -> E* x ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 | |- ( -. ph -> ( ph -> x = y ) ) |
|
| 2 | 1 | alimi | |- ( A. x -. ph -> A. x ( ph -> x = y ) ) |
| 3 | 2 | alrimiv | |- ( A. x -. ph -> A. y A. x ( ph -> x = y ) ) |
| 4 | 3 | 19.2d | |- ( A. x -. ph -> E. y A. x ( ph -> x = y ) ) |
| 5 | alnex | |- ( A. x -. ph <-> -. E. x ph ) |
|
| 6 | 5 | bicomi | |- ( -. E. x ph <-> A. x -. ph ) |
| 7 | df-mo | |- ( E* x ph <-> E. y A. x ( ph -> x = y ) ) |
|
| 8 | 4 6 7 | 3imtr4i | |- ( -. E. x ph -> E* x ph ) |