Description: Alternate definition of nonfreeness. (Contributed by BJ, 16-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | nf2 | |- ( F/ x ph <-> ( A. x ph \/ -. E. x ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf | |- ( F/ x ph <-> ( E. x ph -> A. x ph ) ) |
|
2 | imor | |- ( ( E. x ph -> A. x ph ) <-> ( -. E. x ph \/ A. x ph ) ) |
|
3 | orcom | |- ( ( -. E. x ph \/ A. x ph ) <-> ( A. x ph \/ -. E. x ph ) ) |
|
4 | 1 2 3 | 3bitri | |- ( F/ x ph <-> ( A. x ph \/ -. E. x ph ) ) |