Metamath Proof Explorer


Theorem nf2

Description: Alternate definition of nonfreeness. (Contributed by BJ, 16-Sep-2021)

Ref Expression
Assertion nf2
|- ( F/ x ph <-> ( A. x ph \/ -. E. x ph ) )

Proof

Step Hyp Ref Expression
1 df-nf
 |-  ( F/ x ph <-> ( E. x ph -> A. x ph ) )
2 imor
 |-  ( ( E. x ph -> A. x ph ) <-> ( -. E. x ph \/ A. x ph ) )
3 orcom
 |-  ( ( -. E. x ph \/ A. x ph ) <-> ( A. x ph \/ -. E. x ph ) )
4 1 2 3 3bitri
 |-  ( F/ x ph <-> ( A. x ph \/ -. E. x ph ) )