Description: Alternate definition of nonfreeness. (Contributed by BJ, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nf2 | |- ( F/ x ph <-> ( A. x ph \/ -. E. x ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf | |- ( F/ x ph <-> ( E. x ph -> A. x ph ) ) |
|
| 2 | imor | |- ( ( E. x ph -> A. x ph ) <-> ( -. E. x ph \/ A. x ph ) ) |
|
| 3 | orcom | |- ( ( -. E. x ph \/ A. x ph ) <-> ( A. x ph \/ -. E. x ph ) ) |
|
| 4 | 1 2 3 | 3bitri | |- ( F/ x ph <-> ( A. x ph \/ -. E. x ph ) ) |