Description: Alternate definition of nonfreeness. (Contributed by BJ, 16-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | nf3 | |- ( F/ x ph <-> ( A. x ph \/ A. x -. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf2 | |- ( F/ x ph <-> ( A. x ph \/ -. E. x ph ) ) |
|
2 | alnex | |- ( A. x -. ph <-> -. E. x ph ) |
|
3 | 2 | orbi2i | |- ( ( A. x ph \/ A. x -. ph ) <-> ( A. x ph \/ -. E. x ph ) ) |
4 | 1 3 | bitr4i | |- ( F/ x ph <-> ( A. x ph \/ A. x -. ph ) ) |