Description: If x is not free in ph , ps , and ch , then it is not free in ( ph \/ ps \/ ch ) . (Contributed by Mario Carneiro, 11-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nf.1 | |- F/ x ph |
|
| nf.2 | |- F/ x ps |
||
| nf.3 | |- F/ x ch |
||
| Assertion | nf3or | |- F/ x ( ph \/ ps \/ ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf.1 | |- F/ x ph |
|
| 2 | nf.2 | |- F/ x ps |
|
| 3 | nf.3 | |- F/ x ch |
|
| 4 | df-3or | |- ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) ) |
|
| 5 | 1 2 | nfor | |- F/ x ( ph \/ ps ) |
| 6 | 5 3 | nfor | |- F/ x ( ( ph \/ ps ) \/ ch ) |
| 7 | 4 6 | nfxfr | |- F/ x ( ph \/ ps \/ ch ) |