Description: If x is not free in ph , ps , and ch , then it is not free in ( ph \/ ps \/ ch ) . (Contributed by Mario Carneiro, 11-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nf.1 | |- F/ x ph |
|
nf.2 | |- F/ x ps |
||
nf.3 | |- F/ x ch |
||
Assertion | nf3or | |- F/ x ( ph \/ ps \/ ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf.1 | |- F/ x ph |
|
2 | nf.2 | |- F/ x ps |
|
3 | nf.3 | |- F/ x ch |
|
4 | df-3or | |- ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) ) |
|
5 | 1 2 | nfor | |- F/ x ( ph \/ ps ) |
6 | 5 3 | nfor | |- F/ x ( ( ph \/ ps ) \/ ch ) |
7 | 4 6 | nfxfr | |- F/ x ( ph \/ ps \/ ch ) |