Metamath Proof Explorer


Theorem nf5-1

Description: One direction of nf5 can be proved with a smaller footprint on axiom usage. (Contributed by Wolf Lammen, 16-Sep-2021)

Ref Expression
Assertion nf5-1
|- ( A. x ( ph -> A. x ph ) -> F/ x ph )

Proof

Step Hyp Ref Expression
1 exim
 |-  ( A. x ( ph -> A. x ph ) -> ( E. x ph -> E. x A. x ph ) )
2 hbe1a
 |-  ( E. x A. x ph -> A. x ph )
3 1 2 syl6
 |-  ( A. x ( ph -> A. x ph ) -> ( E. x ph -> A. x ph ) )
4 3 nfd
 |-  ( A. x ( ph -> A. x ph ) -> F/ x ph )