Metamath Proof Explorer


Theorem nf5d

Description: Deduce that x is not free in ps in a context. (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses nf5d.1
|- F/ x ph
nf5d.2
|- ( ph -> ( ps -> A. x ps ) )
Assertion nf5d
|- ( ph -> F/ x ps )

Proof

Step Hyp Ref Expression
1 nf5d.1
 |-  F/ x ph
2 nf5d.2
 |-  ( ph -> ( ps -> A. x ps ) )
3 1 2 alrimi
 |-  ( ph -> A. x ( ps -> A. x ps ) )
4 nf5-1
 |-  ( A. x ( ps -> A. x ps ) -> F/ x ps )
5 3 4 syl
 |-  ( ph -> F/ x ps )