Description: Deduce that x is not free in ps in a context. (Contributed by Mario Carneiro, 24-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nf5d.1 | |- F/ x ph |
|
| nf5d.2 | |- ( ph -> ( ps -> A. x ps ) ) |
||
| Assertion | nf5d | |- ( ph -> F/ x ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5d.1 | |- F/ x ph |
|
| 2 | nf5d.2 | |- ( ph -> ( ps -> A. x ps ) ) |
|
| 3 | 1 2 | alrimi | |- ( ph -> A. x ( ps -> A. x ps ) ) |
| 4 | nf5-1 | |- ( A. x ( ps -> A. x ps ) -> F/ x ps ) |
|
| 5 | 3 4 | syl | |- ( ph -> F/ x ps ) |