Description: Deduce that x is not free in ph from the definition. (Contributed by Mario Carneiro, 11-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nf5i.1 | |- ( ph -> A. x ph ) |
|
| Assertion | nf5i | |- F/ x ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5i.1 | |- ( ph -> A. x ph ) |
|
| 2 | nf5-1 | |- ( A. x ( ph -> A. x ph ) -> F/ x ph ) |
|
| 3 | 2 1 | mpg | |- F/ x ph |