Metamath Proof Explorer


Theorem nf5rOLD

Description: Obsolete version of nfrd as of 23-Nov-2023. (Contributed by Mario Carneiro, 26-Sep-2016) df-nf changed. (Revised by Wolf Lammen, 11-Sep-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nf5rOLD
|- ( F/ x ph -> ( ph -> A. x ph ) )

Proof

Step Hyp Ref Expression
1 19.8a
 |-  ( ph -> E. x ph )
2 df-nf
 |-  ( F/ x ph <-> ( E. x ph -> A. x ph ) )
3 2 biimpi
 |-  ( F/ x ph -> ( E. x ph -> A. x ph ) )
4 1 3 syl5
 |-  ( F/ x ph -> ( ph -> A. x ph ) )