Description: An alternate definition of df-nf . (Contributed by Mario Carneiro, 24-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nf6 | |- ( F/ x ph <-> A. x ( E. x ph -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf | |- ( F/ x ph <-> ( E. x ph -> A. x ph ) ) |
|
| 2 | nfe1 | |- F/ x E. x ph |
|
| 3 | 2 | 19.21 | |- ( A. x ( E. x ph -> ph ) <-> ( E. x ph -> A. x ph ) ) |
| 4 | 1 3 | bitr4i | |- ( F/ x ph <-> A. x ( E. x ph -> ph ) ) |