Metamath Proof Explorer


Theorem nfa1

Description: The setvar x is not free in A. x ph . (Contributed by Mario Carneiro, 11-Aug-2016) df-nf changed. (Revised by Wolf Lammen, 11-Sep-2021) Remove dependency on ax-12 . (Revised by Wolf Lammen, 12-Oct-2021)

Ref Expression
Assertion nfa1
|- F/ x A. x ph

Proof

Step Hyp Ref Expression
1 alex
 |-  ( A. x ph <-> -. E. x -. ph )
2 nfe1
 |-  F/ x E. x -. ph
3 2 nfn
 |-  F/ x -. E. x -. ph
4 1 3 nfxfr
 |-  F/ x A. x ph