Metamath Proof Explorer


Theorem nfa1-o

Description: x is not free in A. x ph . (Contributed by Mario Carneiro, 11-Aug-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nfa1-o
|- F/ x A. x ph

Proof

Step Hyp Ref Expression
1 hba1-o
 |-  ( A. x ph -> A. x A. x ph )
2 1 nf5i
 |-  F/ x A. x ph