Metamath Proof Explorer


Theorem nfabd

Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfabdw when possible. (Contributed by Mario Carneiro, 8-Oct-2016) Avoid ax-9 and ax-ext . (Revised by Wolf Lammen, 23-May-2023) (New usage is discouraged.)

Ref Expression
Hypotheses nfabd.1
|- F/ y ph
nfabd.2
|- ( ph -> F/ x ps )
Assertion nfabd
|- ( ph -> F/_ x { y | ps } )

Proof

Step Hyp Ref Expression
1 nfabd.1
 |-  F/ y ph
2 nfabd.2
 |-  ( ph -> F/ x ps )
3 nfv
 |-  F/ z ph
4 df-clab
 |-  ( z e. { y | ps } <-> [ z / y ] ps )
5 1 2 nfsbd
 |-  ( ph -> F/ x [ z / y ] ps )
6 4 5 nfxfrd
 |-  ( ph -> F/ x z e. { y | ps } )
7 3 6 nfcd
 |-  ( ph -> F/_ x { y | ps } )