| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfabd2.1 |  |-  F/ y ph | 
						
							| 2 |  | nfabd2.2 |  |-  ( ( ph /\ -. A. x x = y ) -> F/ x ps ) | 
						
							| 3 |  | nfnae |  |-  F/ y -. A. x x = y | 
						
							| 4 | 1 3 | nfan |  |-  F/ y ( ph /\ -. A. x x = y ) | 
						
							| 5 | 4 2 | nfabd |  |-  ( ( ph /\ -. A. x x = y ) -> F/_ x { y | ps } ) | 
						
							| 6 | 5 | ex |  |-  ( ph -> ( -. A. x x = y -> F/_ x { y | ps } ) ) | 
						
							| 7 |  | nfab1 |  |-  F/_ y { y | ps } | 
						
							| 8 |  | eqidd |  |-  ( A. x x = y -> { y | ps } = { y | ps } ) | 
						
							| 9 | 8 | drnfc1 |  |-  ( A. x x = y -> ( F/_ x { y | ps } <-> F/_ y { y | ps } ) ) | 
						
							| 10 | 7 9 | mpbiri |  |-  ( A. x x = y -> F/_ x { y | ps } ) | 
						
							| 11 | 6 10 | pm2.61d2 |  |-  ( ph -> F/_ x { y | ps } ) |