Step |
Hyp |
Ref |
Expression |
1 |
|
nfabd2.1 |
|- F/ y ph |
2 |
|
nfabd2.2 |
|- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
3 |
|
nfnae |
|- F/ y -. A. x x = y |
4 |
1 3
|
nfan |
|- F/ y ( ph /\ -. A. x x = y ) |
5 |
4 2
|
nfabd |
|- ( ( ph /\ -. A. x x = y ) -> F/_ x { y | ps } ) |
6 |
5
|
ex |
|- ( ph -> ( -. A. x x = y -> F/_ x { y | ps } ) ) |
7 |
|
nfab1 |
|- F/_ y { y | ps } |
8 |
|
eqidd |
|- ( A. x x = y -> { y | ps } = { y | ps } ) |
9 |
8
|
drnfc1 |
|- ( A. x x = y -> ( F/_ x { y | ps } <-> F/_ y { y | ps } ) ) |
10 |
7 9
|
mpbiri |
|- ( A. x x = y -> F/_ x { y | ps } ) |
11 |
6 10
|
pm2.61d2 |
|- ( ph -> F/_ x { y | ps } ) |