Description: Bound-variable hypothesis builder for a class abstraction. Version of nfabd with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (Revised by Gino Giotto, 10-Jan-2024) (Proof shortened by Wolf Lammen, 23-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfabdw.1 | |- F/ y ph |
|
nfabdw.2 | |- ( ph -> F/ x ps ) |
||
Assertion | nfabdw | |- ( ph -> F/_ x { y | ps } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfabdw.1 | |- F/ y ph |
|
2 | nfabdw.2 | |- ( ph -> F/ x ps ) |
|
3 | nfv | |- F/ z ph |
|
4 | df-clab | |- ( z e. { y | ps } <-> [ z / y ] ps ) |
|
5 | sb6 | |- ( [ z / y ] ps <-> A. y ( y = z -> ps ) ) |
|
6 | 4 5 | bitri | |- ( z e. { y | ps } <-> A. y ( y = z -> ps ) ) |
7 | nfvd | |- ( ph -> F/ x y = z ) |
|
8 | 7 2 | nfimd | |- ( ph -> F/ x ( y = z -> ps ) ) |
9 | 1 8 | nfald | |- ( ph -> F/ x A. y ( y = z -> ps ) ) |
10 | 6 9 | nfxfrd | |- ( ph -> F/ x z e. { y | ps } ) |
11 | 3 10 | nfcd | |- ( ph -> F/_ x { y | ps } ) |