Metamath Proof Explorer


Theorem nfabdw

Description: Bound-variable hypothesis builder for a class abstraction. Version of nfabd with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (Revised by Gino Giotto, 10-Jan-2024) (Proof shortened by Wolf Lammen, 23-Sep-2024)

Ref Expression
Hypotheses nfabdw.1
|- F/ y ph
nfabdw.2
|- ( ph -> F/ x ps )
Assertion nfabdw
|- ( ph -> F/_ x { y | ps } )

Proof

Step Hyp Ref Expression
1 nfabdw.1
 |-  F/ y ph
2 nfabdw.2
 |-  ( ph -> F/ x ps )
3 nfv
 |-  F/ z ph
4 df-clab
 |-  ( z e. { y | ps } <-> [ z / y ] ps )
5 sb6
 |-  ( [ z / y ] ps <-> A. y ( y = z -> ps ) )
6 4 5 bitri
 |-  ( z e. { y | ps } <-> A. y ( y = z -> ps ) )
7 nfvd
 |-  ( ph -> F/ x y = z )
8 7 2 nfimd
 |-  ( ph -> F/ x ( y = z -> ps ) )
9 1 8 nfald
 |-  ( ph -> F/ x A. y ( y = z -> ps ) )
10 6 9 nfxfrd
 |-  ( ph -> F/ x z e. { y | ps } )
11 3 10 nfcd
 |-  ( ph -> F/_ x { y | ps } )