Metamath Proof Explorer


Theorem nfan1

Description: A closed form of nfan . (Contributed by Mario Carneiro, 3-Oct-2016) df-nf changed. (Revised by Wolf Lammen, 18-Sep-2021) (Proof shortened by Wolf Lammen, 7-Jul-2022)

Ref Expression
Hypotheses nfim1.1
|- F/ x ph
nfim1.2
|- ( ph -> F/ x ps )
Assertion nfan1
|- F/ x ( ph /\ ps )

Proof

Step Hyp Ref Expression
1 nfim1.1
 |-  F/ x ph
2 nfim1.2
 |-  ( ph -> F/ x ps )
3 df-an
 |-  ( ( ph /\ ps ) <-> -. ( ph -> -. ps ) )
4 2 nfnd
 |-  ( ph -> F/ x -. ps )
5 1 4 nfim1
 |-  F/ x ( ph -> -. ps )
6 5 nfn
 |-  F/ x -. ( ph -> -. ps )
7 3 6 nfxfr
 |-  F/ x ( ph /\ ps )