Description: If in a context x is not free in ps and ch , then it is not free in ( ps <-> ch ) . (Contributed by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 29-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfbid.1 | |- ( ph -> F/ x ps ) |
|
| nfbid.2 | |- ( ph -> F/ x ch ) |
||
| Assertion | nfbid | |- ( ph -> F/ x ( ps <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbid.1 | |- ( ph -> F/ x ps ) |
|
| 2 | nfbid.2 | |- ( ph -> F/ x ch ) |
|
| 3 | dfbi2 | |- ( ( ps <-> ch ) <-> ( ( ps -> ch ) /\ ( ch -> ps ) ) ) |
|
| 4 | 1 2 | nfimd | |- ( ph -> F/ x ( ps -> ch ) ) |
| 5 | 2 1 | nfimd | |- ( ph -> F/ x ( ch -> ps ) ) |
| 6 | 4 5 | nfand | |- ( ph -> F/ x ( ( ps -> ch ) /\ ( ch -> ps ) ) ) |
| 7 | 3 6 | nfxfrd | |- ( ph -> F/ x ( ps <-> ch ) ) |