Metamath Proof Explorer


Theorem nfbidf

Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016) df-nf changed. (Revised by Wolf Lammen, 18-Sep-2021)

Ref Expression
Hypotheses albid.1
|- F/ x ph
albid.2
|- ( ph -> ( ps <-> ch ) )
Assertion nfbidf
|- ( ph -> ( F/ x ps <-> F/ x ch ) )

Proof

Step Hyp Ref Expression
1 albid.1
 |-  F/ x ph
2 albid.2
 |-  ( ph -> ( ps <-> ch ) )
3 1 2 exbid
 |-  ( ph -> ( E. x ps <-> E. x ch ) )
4 1 2 albid
 |-  ( ph -> ( A. x ps <-> A. x ch ) )
5 3 4 imbi12d
 |-  ( ph -> ( ( E. x ps -> A. x ps ) <-> ( E. x ch -> A. x ch ) ) )
6 df-nf
 |-  ( F/ x ps <-> ( E. x ps -> A. x ps ) )
7 df-nf
 |-  ( F/ x ch <-> ( E. x ch -> A. x ch ) )
8 5 6 7 3bitr4g
 |-  ( ph -> ( F/ x ps <-> F/ x ch ) )