Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016) df-nf changed. (Revised by Wolf Lammen, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | albid.1 | |- F/ x ph |
|
| albid.2 | |- ( ph -> ( ps <-> ch ) ) |
||
| Assertion | nfbidf | |- ( ph -> ( F/ x ps <-> F/ x ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albid.1 | |- F/ x ph |
|
| 2 | albid.2 | |- ( ph -> ( ps <-> ch ) ) |
|
| 3 | 1 2 | exbid | |- ( ph -> ( E. x ps <-> E. x ch ) ) |
| 4 | 1 2 | albid | |- ( ph -> ( A. x ps <-> A. x ch ) ) |
| 5 | 3 4 | imbi12d | |- ( ph -> ( ( E. x ps -> A. x ps ) <-> ( E. x ch -> A. x ch ) ) ) |
| 6 | df-nf | |- ( F/ x ps <-> ( E. x ps -> A. x ps ) ) |
|
| 7 | df-nf | |- ( F/ x ch <-> ( E. x ch -> A. x ch ) ) |
|
| 8 | 5 6 7 | 3bitr4g | |- ( ph -> ( F/ x ps <-> F/ x ch ) ) |