Metamath Proof Explorer


Theorem nfbiit

Description: Equivalence theorem for the nonfreeness predicate. Closed form of nfbii . (Contributed by Giovanni Mascellani, 10-Apr-2018) Reduce axiom usage. (Revised by BJ, 6-May-2019)

Ref Expression
Assertion nfbiit
|- ( A. x ( ph <-> ps ) -> ( F/ x ph <-> F/ x ps ) )

Proof

Step Hyp Ref Expression
1 exbi
 |-  ( A. x ( ph <-> ps ) -> ( E. x ph <-> E. x ps ) )
2 albi
 |-  ( A. x ( ph <-> ps ) -> ( A. x ph <-> A. x ps ) )
3 1 2 imbi12d
 |-  ( A. x ( ph <-> ps ) -> ( ( E. x ph -> A. x ph ) <-> ( E. x ps -> A. x ps ) ) )
4 df-nf
 |-  ( F/ x ph <-> ( E. x ph -> A. x ph ) )
5 df-nf
 |-  ( F/ x ps <-> ( E. x ps -> A. x ps ) )
6 3 4 5 3bitr4g
 |-  ( A. x ( ph <-> ps ) -> ( F/ x ph <-> F/ x ps ) )