Description: Equivalence theorem for the nonfreeness predicate. Closed form of nfbii . (Contributed by Giovanni Mascellani, 10-Apr-2018) Reduce axiom usage. (Revised by BJ, 6-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | nfbiit | |- ( A. x ( ph <-> ps ) -> ( F/ x ph <-> F/ x ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi | |- ( A. x ( ph <-> ps ) -> ( E. x ph <-> E. x ps ) ) |
|
2 | albi | |- ( A. x ( ph <-> ps ) -> ( A. x ph <-> A. x ps ) ) |
|
3 | 1 2 | imbi12d | |- ( A. x ( ph <-> ps ) -> ( ( E. x ph -> A. x ph ) <-> ( E. x ps -> A. x ps ) ) ) |
4 | df-nf | |- ( F/ x ph <-> ( E. x ph -> A. x ph ) ) |
|
5 | df-nf | |- ( F/ x ps <-> ( E. x ps -> A. x ps ) ) |
|
6 | 3 4 5 | 3bitr4g | |- ( A. x ( ph <-> ps ) -> ( F/ x ph <-> F/ x ps ) ) |