Description: Deduce that a class A does not have x free in it. (Contributed by Mario Carneiro, 11-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfci.1 | |- F/ x y e. A |
|
| Assertion | nfci | |- F/_ x A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfci.1 | |- F/ x y e. A |
|
| 2 | df-nfc | |- ( F/_ x A <-> A. y F/ x y e. A ) |
|
| 3 | 2 1 | mpgbir | |- F/_ x A |