Metamath Proof Explorer


Theorem nfcii

Description: Deduce that a class A does not have x free in it. (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypothesis nfcii.1
|- ( y e. A -> A. x y e. A )
Assertion nfcii
|- F/_ x A

Proof

Step Hyp Ref Expression
1 nfcii.1
 |-  ( y e. A -> A. x y e. A )
2 1 nf5i
 |-  F/ x y e. A
3 2 nfci
 |-  F/_ x A