Metamath Proof Explorer


Theorem nfco

Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999)

Ref Expression
Hypotheses nfco.1
|- F/_ x A
nfco.2
|- F/_ x B
Assertion nfco
|- F/_ x ( A o. B )

Proof

Step Hyp Ref Expression
1 nfco.1
 |-  F/_ x A
2 nfco.2
 |-  F/_ x B
3 df-co
 |-  ( A o. B ) = { <. y , z >. | E. w ( y B w /\ w A z ) }
4 nfcv
 |-  F/_ x y
5 nfcv
 |-  F/_ x w
6 4 2 5 nfbr
 |-  F/ x y B w
7 nfcv
 |-  F/_ x z
8 5 1 7 nfbr
 |-  F/ x w A z
9 6 8 nfan
 |-  F/ x ( y B w /\ w A z )
10 9 nfex
 |-  F/ x E. w ( y B w /\ w A z )
11 10 nfopab
 |-  F/_ x { <. y , z >. | E. w ( y B w /\ w A z ) }
12 3 11 nfcxfr
 |-  F/_ x ( A o. B )