Step |
Hyp |
Ref |
Expression |
1 |
|
nfcprod.1 |
|- F/_ x A |
2 |
|
nfcprod.2 |
|- F/_ x B |
3 |
|
df-prod |
|- prod_ k e. A B = ( iota y ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
4 |
|
nfcv |
|- F/_ x ZZ |
5 |
|
nfcv |
|- F/_ x ( ZZ>= ` m ) |
6 |
1 5
|
nfss |
|- F/ x A C_ ( ZZ>= ` m ) |
7 |
|
nfv |
|- F/ x z =/= 0 |
8 |
|
nfcv |
|- F/_ x n |
9 |
|
nfcv |
|- F/_ x x. |
10 |
1
|
nfcri |
|- F/ x k e. A |
11 |
|
nfcv |
|- F/_ x 1 |
12 |
10 2 11
|
nfif |
|- F/_ x if ( k e. A , B , 1 ) |
13 |
4 12
|
nfmpt |
|- F/_ x ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
14 |
8 9 13
|
nfseq |
|- F/_ x seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) |
15 |
|
nfcv |
|- F/_ x ~~> |
16 |
|
nfcv |
|- F/_ x z |
17 |
14 15 16
|
nfbr |
|- F/ x seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z |
18 |
7 17
|
nfan |
|- F/ x ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) |
19 |
18
|
nfex |
|- F/ x E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) |
20 |
5 19
|
nfrex |
|- F/ x E. n e. ( ZZ>= ` m ) E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) |
21 |
|
nfcv |
|- F/_ x m |
22 |
21 9 13
|
nfseq |
|- F/_ x seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) |
23 |
|
nfcv |
|- F/_ x y |
24 |
22 15 23
|
nfbr |
|- F/ x seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y |
25 |
6 20 24
|
nf3an |
|- F/ x ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) |
26 |
4 25
|
nfrex |
|- F/ x E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) |
27 |
|
nfcv |
|- F/_ x NN |
28 |
|
nfcv |
|- F/_ x f |
29 |
|
nfcv |
|- F/_ x ( 1 ... m ) |
30 |
28 29 1
|
nff1o |
|- F/ x f : ( 1 ... m ) -1-1-onto-> A |
31 |
|
nfcv |
|- F/_ x ( f ` n ) |
32 |
31 2
|
nfcsbw |
|- F/_ x [_ ( f ` n ) / k ]_ B |
33 |
27 32
|
nfmpt |
|- F/_ x ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
34 |
11 9 33
|
nfseq |
|- F/_ x seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) |
35 |
34 21
|
nffv |
|- F/_ x ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
36 |
35
|
nfeq2 |
|- F/ x y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
37 |
30 36
|
nfan |
|- F/ x ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
38 |
37
|
nfex |
|- F/ x E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
39 |
27 38
|
nfrex |
|- F/ x E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
40 |
26 39
|
nfor |
|- F/ x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
41 |
40
|
nfiotaw |
|- F/_ x ( iota y ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
42 |
3 41
|
nfcxfr |
|- F/_ x prod_ k e. A B |