| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcprod1.1 |
|- F/_ k A |
| 2 |
|
df-prod |
|- prod_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
| 3 |
|
nfcv |
|- F/_ k ZZ |
| 4 |
|
nfcv |
|- F/_ k ( ZZ>= ` m ) |
| 5 |
1 4
|
nfss |
|- F/ k A C_ ( ZZ>= ` m ) |
| 6 |
|
nfv |
|- F/ k y =/= 0 |
| 7 |
|
nfcv |
|- F/_ k n |
| 8 |
|
nfcv |
|- F/_ k x. |
| 9 |
|
nfmpt1 |
|- F/_ k ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
| 10 |
7 8 9
|
nfseq |
|- F/_ k seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) |
| 11 |
|
nfcv |
|- F/_ k ~~> |
| 12 |
|
nfcv |
|- F/_ k y |
| 13 |
10 11 12
|
nfbr |
|- F/ k seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y |
| 14 |
6 13
|
nfan |
|- F/ k ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) |
| 15 |
14
|
nfex |
|- F/ k E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) |
| 16 |
4 15
|
nfrexw |
|- F/ k E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) |
| 17 |
|
nfcv |
|- F/_ k m |
| 18 |
17 8 9
|
nfseq |
|- F/_ k seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) |
| 19 |
|
nfcv |
|- F/_ k x |
| 20 |
18 11 19
|
nfbr |
|- F/ k seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x |
| 21 |
5 16 20
|
nf3an |
|- F/ k ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) |
| 22 |
3 21
|
nfrexw |
|- F/ k E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) |
| 23 |
|
nfcv |
|- F/_ k NN |
| 24 |
|
nfcv |
|- F/_ k f |
| 25 |
|
nfcv |
|- F/_ k ( 1 ... m ) |
| 26 |
24 25 1
|
nff1o |
|- F/ k f : ( 1 ... m ) -1-1-onto-> A |
| 27 |
|
nfcv |
|- F/_ k 1 |
| 28 |
|
nfcsb1v |
|- F/_ k [_ ( f ` n ) / k ]_ B |
| 29 |
23 28
|
nfmpt |
|- F/_ k ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
| 30 |
27 8 29
|
nfseq |
|- F/_ k seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) |
| 31 |
30 17
|
nffv |
|- F/_ k ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
| 32 |
31
|
nfeq2 |
|- F/ k x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
| 33 |
26 32
|
nfan |
|- F/ k ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 34 |
33
|
nfex |
|- F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 35 |
23 34
|
nfrexw |
|- F/ k E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 36 |
22 35
|
nfor |
|- F/ k ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
| 37 |
36
|
nfiotaw |
|- F/_ k ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
| 38 |
2 37
|
nfcxfr |
|- F/_ k prod_ k e. A B |