Step |
Hyp |
Ref |
Expression |
1 |
|
nfcprod1.1 |
|- F/_ k A |
2 |
|
df-prod |
|- prod_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
3 |
|
nfcv |
|- F/_ k ZZ |
4 |
|
nfcv |
|- F/_ k ( ZZ>= ` m ) |
5 |
1 4
|
nfss |
|- F/ k A C_ ( ZZ>= ` m ) |
6 |
|
nfv |
|- F/ k y =/= 0 |
7 |
|
nfcv |
|- F/_ k n |
8 |
|
nfcv |
|- F/_ k x. |
9 |
|
nfmpt1 |
|- F/_ k ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
10 |
7 8 9
|
nfseq |
|- F/_ k seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) |
11 |
|
nfcv |
|- F/_ k ~~> |
12 |
|
nfcv |
|- F/_ k y |
13 |
10 11 12
|
nfbr |
|- F/ k seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y |
14 |
6 13
|
nfan |
|- F/ k ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) |
15 |
14
|
nfex |
|- F/ k E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) |
16 |
4 15
|
nfrex |
|- F/ k E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) |
17 |
|
nfcv |
|- F/_ k m |
18 |
17 8 9
|
nfseq |
|- F/_ k seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) |
19 |
|
nfcv |
|- F/_ k x |
20 |
18 11 19
|
nfbr |
|- F/ k seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x |
21 |
5 16 20
|
nf3an |
|- F/ k ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) |
22 |
3 21
|
nfrex |
|- F/ k E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) |
23 |
|
nfcv |
|- F/_ k NN |
24 |
|
nfcv |
|- F/_ k f |
25 |
|
nfcv |
|- F/_ k ( 1 ... m ) |
26 |
24 25 1
|
nff1o |
|- F/ k f : ( 1 ... m ) -1-1-onto-> A |
27 |
|
nfcv |
|- F/_ k 1 |
28 |
|
nfcsb1v |
|- F/_ k [_ ( f ` n ) / k ]_ B |
29 |
23 28
|
nfmpt |
|- F/_ k ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
30 |
27 8 29
|
nfseq |
|- F/_ k seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) |
31 |
30 17
|
nffv |
|- F/_ k ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
32 |
31
|
nfeq2 |
|- F/ k x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
33 |
26 32
|
nfan |
|- F/ k ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
34 |
33
|
nfex |
|- F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
35 |
23 34
|
nfrex |
|- F/ k E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
36 |
22 35
|
nfor |
|- F/ k ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
37 |
36
|
nfiotaw |
|- F/_ k ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
38 |
2 37
|
nfcxfr |
|- F/_ k prod_ k e. A B |