Metamath Proof Explorer


Theorem nfcriOLD

Description: Obsolete version of nfcri as of 3-Jun-2024. (Contributed by Mario Carneiro, 11-Aug-2016) Avoid ax-10 , ax-11 . (Revised by Gino Giotto, 23-May-2024) Avoid ax-12 . (Revised by SN, 26-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis nfcrii.1
|- F/_ x A
Assertion nfcriOLD
|- F/ x y e. A

Proof

Step Hyp Ref Expression
1 nfcrii.1
 |-  F/_ x A
2 eleq1w
 |-  ( z = y -> ( z e. A <-> y e. A ) )
3 2 nfbidv
 |-  ( z = y -> ( F/ x z e. A <-> F/ x y e. A ) )
4 df-nfc
 |-  ( F/_ x A <-> A. z F/ x z e. A )
5 4 biimpi
 |-  ( F/_ x A -> A. z F/ x z e. A )
6 df-nf
 |-  ( F/ x z e. A <-> ( E. x z e. A -> A. x z e. A ) )
7 6 albii
 |-  ( A. z F/ x z e. A <-> A. z ( E. x z e. A -> A. x z e. A ) )
8 eleq1w
 |-  ( z = w -> ( z e. A <-> w e. A ) )
9 8 exbidv
 |-  ( z = w -> ( E. x z e. A <-> E. x w e. A ) )
10 8 albidv
 |-  ( z = w -> ( A. x z e. A <-> A. x w e. A ) )
11 9 10 imbi12d
 |-  ( z = w -> ( ( E. x z e. A -> A. x z e. A ) <-> ( E. x w e. A -> A. x w e. A ) ) )
12 11 spw
 |-  ( A. z ( E. x z e. A -> A. x z e. A ) -> ( E. x z e. A -> A. x z e. A ) )
13 7 12 sylbi
 |-  ( A. z F/ x z e. A -> ( E. x z e. A -> A. x z e. A ) )
14 1 5 13 mp2b
 |-  ( E. x z e. A -> A. x z e. A )
15 14 nfi
 |-  F/ x z e. A
16 3 15 chvarvv
 |-  F/ x y e. A