Metamath Proof Explorer


Theorem nfcriiOLD

Description: Obsolete version of nfcrii as of 23-May-2024. (Contributed by Mario Carneiro, 11-Aug-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nfcriOLD.1
|- F/_ x A
Assertion nfcriiOLD
|- ( y e. A -> A. x y e. A )

Proof

Step Hyp Ref Expression
1 nfcriOLD.1
 |-  F/_ x A
2 1 nfcri
 |-  F/ x z e. A
3 2 nfsbv
 |-  F/ x [ y / z ] z e. A
4 3 nf5ri
 |-  ( [ y / z ] z e. A -> A. x [ y / z ] z e. A )
5 clelsb1
 |-  ( [ y / z ] z e. A <-> y e. A )
6 5 albii
 |-  ( A. x [ y / z ] z e. A <-> A. x y e. A )
7 4 5 6 3imtr3i
 |-  ( y e. A -> A. x y e. A )