Metamath Proof Explorer


Theorem nfcsbd

Description: Deduction version of nfcsb . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 21-Nov-2005) (Revised by Mario Carneiro, 12-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfcsbd.1
|- F/ y ph
nfcsbd.2
|- ( ph -> F/_ x A )
nfcsbd.3
|- ( ph -> F/_ x B )
Assertion nfcsbd
|- ( ph -> F/_ x [_ A / y ]_ B )

Proof

Step Hyp Ref Expression
1 nfcsbd.1
 |-  F/ y ph
2 nfcsbd.2
 |-  ( ph -> F/_ x A )
3 nfcsbd.3
 |-  ( ph -> F/_ x B )
4 df-csb
 |-  [_ A / y ]_ B = { z | [. A / y ]. z e. B }
5 nfv
 |-  F/ z ph
6 3 nfcrd
 |-  ( ph -> F/ x z e. B )
7 1 2 6 nfsbcd
 |-  ( ph -> F/ x [. A / y ]. z e. B )
8 5 7 nfabd
 |-  ( ph -> F/_ x { z | [. A / y ]. z e. B } )
9 4 8 nfcxfrd
 |-  ( ph -> F/_ x [_ A / y ]_ B )