Description: Deduce that x is not free in ps in a context. (Contributed by Wolf Lammen, 16-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nfd.1 | |- ( ph -> ( E. x ps -> A. x ps ) ) |
|
Assertion | nfd | |- ( ph -> F/ x ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfd.1 | |- ( ph -> ( E. x ps -> A. x ps ) ) |
|
2 | df-nf | |- ( F/ x ps <-> ( E. x ps -> A. x ps ) ) |
|
3 | 1 2 | sylibr | |- ( ph -> F/ x ps ) |