Metamath Proof Explorer


Theorem nfd

Description: Deduce that x is not free in ps in a context. (Contributed by Wolf Lammen, 16-Sep-2021)

Ref Expression
Hypothesis nfd.1
|- ( ph -> ( E. x ps -> A. x ps ) )
Assertion nfd
|- ( ph -> F/ x ps )

Proof

Step Hyp Ref Expression
1 nfd.1
 |-  ( ph -> ( E. x ps -> A. x ps ) )
2 df-nf
 |-  ( F/ x ps <-> ( E. x ps -> A. x ps ) )
3 1 2 sylibr
 |-  ( ph -> F/ x ps )