Metamath Proof Explorer


Theorem nfdif

Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses nfdif.1
|- F/_ x A
nfdif.2
|- F/_ x B
Assertion nfdif
|- F/_ x ( A \ B )

Proof

Step Hyp Ref Expression
1 nfdif.1
 |-  F/_ x A
2 nfdif.2
 |-  F/_ x B
3 dfdif2
 |-  ( A \ B ) = { y e. A | -. y e. B }
4 2 nfcri
 |-  F/ x y e. B
5 4 nfn
 |-  F/ x -. y e. B
6 5 1 nfrabw
 |-  F/_ x { y e. A | -. y e. B }
7 3 6 nfcxfr
 |-  F/_ x ( A \ B )