Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Disjointness nfdisjw  
				
		 
		
			
		 
		Description:   Bound-variable hypothesis builder for disjoint collection.  Version of
       nfdisj  with a disjoint variable condition, which does not require
       ax-13  .  (Contributed by Mario Carneiro , 14-Nov-2016)   Avoid
       ax-13  .  (Revised by GG , 26-Jan-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfdisjw.1 |- F/_ y A  
					
						nfdisjw.2 |- F/_ y B  
				
					Assertion 
					nfdisjw |- F/ y Disj_ x e. A B  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfdisjw.1  |-  F/_ y A  
						
							2 
								
							 
							nfdisjw.2  |-  F/_ y B  
						
							3 
								
							 
							dfdisj2  |-  ( Disj_ x e. A B <-> A. z E* x ( x e. A /\ z e. B ) )  
						
							4 
								
							 
							nftru  |-  F/ x T.  
						
							5 
								
							 
							nfcvd  |-  ( T. -> F/_ y x )  
						
							6 
								1 
							 
							a1i  |-  ( T. -> F/_ y A )  
						
							7 
								5  6 
							 
							nfeld  |-  ( T. -> F/ y x e. A )  
						
							8 
								2 
							 
							nfcri  |-  F/ y z e. B  
						
							9 
								8 
							 
							a1i  |-  ( T. -> F/ y z e. B )  
						
							10 
								7  9 
							 
							nfand  |-  ( T. -> F/ y ( x e. A /\ z e. B ) )  
						
							11 
								4  10 
							 
							nfmodv  |-  ( T. -> F/ y E* x ( x e. A /\ z e. B ) )  
						
							12 
								11 
							 
							mptru  |-  F/ y E* x ( x e. A /\ z e. B )  
						
							13 
								12 
							 
							nfal  |-  F/ y A. z E* x ( x e. A /\ z e. B )  
						
							14 
								3  13 
							 
							nfxfr  |-  F/ y Disj_ x e. A B