Metamath Proof Explorer


Theorem nfdisjw

Description: Bound-variable hypothesis builder for disjoint collection. Version of nfdisj with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 14-Nov-2016) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses nfdisjw.1
|- F/_ y A
nfdisjw.2
|- F/_ y B
Assertion nfdisjw
|- F/ y Disj_ x e. A B

Proof

Step Hyp Ref Expression
1 nfdisjw.1
 |-  F/_ y A
2 nfdisjw.2
 |-  F/_ y B
3 dfdisj2
 |-  ( Disj_ x e. A B <-> A. z E* x ( x e. A /\ z e. B ) )
4 nftru
 |-  F/ x T.
5 nfcvd
 |-  ( T. -> F/_ y x )
6 1 a1i
 |-  ( T. -> F/_ y A )
7 5 6 nfeld
 |-  ( T. -> F/ y x e. A )
8 2 nfcri
 |-  F/ y z e. B
9 8 a1i
 |-  ( T. -> F/ y z e. B )
10 7 9 nfand
 |-  ( T. -> F/ y ( x e. A /\ z e. B ) )
11 4 10 nfmodv
 |-  ( T. -> F/ y E* x ( x e. A /\ z e. B ) )
12 11 mptru
 |-  F/ y E* x ( x e. A /\ z e. B )
13 12 nfal
 |-  F/ y A. z E* x ( x e. A /\ z e. B )
14 3 13 nfxfr
 |-  F/ y Disj_ x e. A B