Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Disjointness
nfdisjw
Metamath Proof Explorer
Description: Bound-variable hypothesis builder for disjoint collection. Version of
nfdisj with a disjoint variable condition, which does not require
ax-13 . (Contributed by Mario Carneiro , 14-Nov-2016) (Revised by Gino Giotto , 26-Jan-2024)
Ref
Expression
Hypotheses
nfdisjw.1
|- F/_ y A
nfdisjw.2
|- F/_ y B
Assertion
nfdisjw
|- F/ y Disj_ x e. A B
Proof
Step
Hyp
Ref
Expression
1
nfdisjw.1
|- F/_ y A
2
nfdisjw.2
|- F/_ y B
3
dfdisj2
|- ( Disj_ x e. A B <-> A. z E* x ( x e. A /\ z e. B ) )
4
nftru
|- F/ x T.
5
nfcvd
|- ( T. -> F/_ y x )
6
1
a1i
|- ( T. -> F/_ y A )
7
5 6
nfeld
|- ( T. -> F/ y x e. A )
8
2
nfcri
|- F/ y z e. B
9
8
a1i
|- ( T. -> F/ y z e. B )
10
7 9
nfand
|- ( T. -> F/ y ( x e. A /\ z e. B ) )
11
4 10
nfmodv
|- ( T. -> F/ y E* x ( x e. A /\ z e. B ) )
12
11
mptru
|- F/ y E* x ( x e. A /\ z e. B )
13
12
nfal
|- F/ y A. z E* x ( x e. A /\ z e. B )
14
3 13
nfxfr
|- F/ y Disj_ x e. A B