Metamath Proof Explorer


Theorem nfdju

Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022)

Ref Expression
Hypotheses nfdju.1
|- F/_ x A
nfdju.2
|- F/_ x B
Assertion nfdju
|- F/_ x ( A |_| B )

Proof

Step Hyp Ref Expression
1 nfdju.1
 |-  F/_ x A
2 nfdju.2
 |-  F/_ x B
3 df-dju
 |-  ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) )
4 nfcv
 |-  F/_ x { (/) }
5 4 1 nfxp
 |-  F/_ x ( { (/) } X. A )
6 nfcv
 |-  F/_ x { 1o }
7 6 2 nfxp
 |-  F/_ x ( { 1o } X. B )
8 5 7 nfun
 |-  F/_ x ( ( { (/) } X. A ) u. ( { 1o } X. B ) )
9 3 8 nfcxfr
 |-  F/_ x ( A |_| B )