Step |
Hyp |
Ref |
Expression |
1 |
|
nfeqd.1 |
|- ( ph -> F/_ x A ) |
2 |
|
nfeqd.2 |
|- ( ph -> F/_ x B ) |
3 |
|
dfcleq |
|- ( A = B <-> A. y ( y e. A <-> y e. B ) ) |
4 |
|
nfv |
|- F/ y ph |
5 |
|
df-nfc |
|- ( F/_ x A <-> A. y F/ x y e. A ) |
6 |
1 5
|
sylib |
|- ( ph -> A. y F/ x y e. A ) |
7 |
6
|
19.21bi |
|- ( ph -> F/ x y e. A ) |
8 |
|
df-nfc |
|- ( F/_ x B <-> A. y F/ x y e. B ) |
9 |
2 8
|
sylib |
|- ( ph -> A. y F/ x y e. B ) |
10 |
9
|
19.21bi |
|- ( ph -> F/ x y e. B ) |
11 |
7 10
|
nfbid |
|- ( ph -> F/ x ( y e. A <-> y e. B ) ) |
12 |
4 11
|
nfald |
|- ( ph -> F/ x A. y ( y e. A <-> y e. B ) ) |
13 |
3 12
|
nfxfrd |
|- ( ph -> F/ x A = B ) |