Metamath Proof Explorer


Theorem nfeu1

Description: Bound-variable hypothesis builder for uniqueness. See also nfeu1ALT . (Contributed by NM, 9-Jul-1994) (Revised by Mario Carneiro, 7-Oct-2016)

Ref Expression
Assertion nfeu1
|- F/ x E! x ph

Proof

Step Hyp Ref Expression
1 eu6
 |-  ( E! x ph <-> E. y A. x ( ph <-> x = y ) )
2 nfa1
 |-  F/ x A. x ( ph <-> x = y )
3 2 nfex
 |-  F/ x E. y A. x ( ph <-> x = y )
4 1 3 nfxfr
 |-  F/ x E! x ph