Description: Bound-variable hypothesis builder for uniqueness. (Contributed by Mario Carneiro, 14-Nov-2016) (Proof shortened by Wolf Lammen, 4-Oct-2018) (Proof shortened by BJ, 14-Oct-2022) Usage of this theorem is discouraged because it depends on ax-13 . Use nfeudw instead. (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfeud2.1 | |- F/ y ph |
|
| nfeud2.2 | |- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
||
| Assertion | nfeud2 | |- ( ph -> F/ x E! y ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeud2.1 | |- F/ y ph |
|
| 2 | nfeud2.2 | |- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
|
| 3 | df-eu | |- ( E! y ps <-> ( E. y ps /\ E* y ps ) ) |
|
| 4 | 1 2 | nfexd2 | |- ( ph -> F/ x E. y ps ) |
| 5 | 1 2 | nfmod2 | |- ( ph -> F/ x E* y ps ) |
| 6 | 4 5 | nfand | |- ( ph -> F/ x ( E. y ps /\ E* y ps ) ) |
| 7 | 3 6 | nfxfrd | |- ( ph -> F/ x E! y ps ) |