Metamath Proof Explorer


Theorem nfeud2

Description: Bound-variable hypothesis builder for uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . Check out nfeudw for a version that replaces the distinctor with a disjoint variable condition, not requiring ax-13 . (Contributed by Mario Carneiro, 14-Nov-2016) (Proof shortened by Wolf Lammen, 4-Oct-2018) (Proof shortened by BJ, 14-Oct-2022) (New usage is discouraged.)

Ref Expression
Hypotheses nfeud2.1
|- F/ y ph
nfeud2.2
|- ( ( ph /\ -. A. x x = y ) -> F/ x ps )
Assertion nfeud2
|- ( ph -> F/ x E! y ps )

Proof

Step Hyp Ref Expression
1 nfeud2.1
 |-  F/ y ph
2 nfeud2.2
 |-  ( ( ph /\ -. A. x x = y ) -> F/ x ps )
3 df-eu
 |-  ( E! y ps <-> ( E. y ps /\ E* y ps ) )
4 1 2 nfexd2
 |-  ( ph -> F/ x E. y ps )
5 1 2 nfmod2
 |-  ( ph -> F/ x E* y ps )
6 4 5 nfand
 |-  ( ph -> F/ x ( E. y ps /\ E* y ps ) )
7 3 6 nfxfrd
 |-  ( ph -> F/ x E! y ps )