Metamath Proof Explorer


Theorem nfeudw

Description: Bound-variable hypothesis builder for the unique existential quantifier. Deduction version of nfeu . Version of nfeud with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 15-Feb-2013) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfeudw.1
|- F/ y ph
nfeudw.2
|- ( ph -> F/ x ps )
Assertion nfeudw
|- ( ph -> F/ x E! y ps )

Proof

Step Hyp Ref Expression
1 nfeudw.1
 |-  F/ y ph
2 nfeudw.2
 |-  ( ph -> F/ x ps )
3 df-eu
 |-  ( E! y ps <-> ( E. y ps /\ E* y ps ) )
4 1 2 nfexd
 |-  ( ph -> F/ x E. y ps )
5 1 2 nfmodv
 |-  ( ph -> F/ x E* y ps )
6 4 5 nfand
 |-  ( ph -> F/ x ( E. y ps /\ E* y ps ) )
7 3 6 nfxfrd
 |-  ( ph -> F/ x E! y ps )