Metamath Proof Explorer


Theorem nfeuw

Description: Bound-variable hypothesis builder for the unique existential quantifier. Version of nfeu with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 8-Mar-1995) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypothesis nfeuw.1
|- F/ x ph
Assertion nfeuw
|- F/ x E! y ph

Proof

Step Hyp Ref Expression
1 nfeuw.1
 |-  F/ x ph
2 nftru
 |-  F/ y T.
3 1 a1i
 |-  ( T. -> F/ x ph )
4 2 3 nfeudw
 |-  ( T. -> F/ x E! y ph )
5 4 mptru
 |-  F/ x E! y ph