Description: If x is not free in ps , then it is not free in E. y ps . (Contributed by Mario Carneiro, 24-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfald.1 | |- F/ y ph |
|
| nfald.2 | |- ( ph -> F/ x ps ) |
||
| Assertion | nfexd | |- ( ph -> F/ x E. y ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfald.1 | |- F/ y ph |
|
| 2 | nfald.2 | |- ( ph -> F/ x ps ) |
|
| 3 | df-ex | |- ( E. y ps <-> -. A. y -. ps ) |
|
| 4 | 2 | nfnd | |- ( ph -> F/ x -. ps ) |
| 5 | 1 4 | nfald | |- ( ph -> F/ x A. y -. ps ) |
| 6 | 5 | nfnd | |- ( ph -> F/ x -. A. y -. ps ) |
| 7 | 3 6 | nfxfrd | |- ( ph -> F/ x E. y ps ) |