Description: Deduce that x is not free in ph from the definition. (Contributed by Wolf Lammen, 15-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nfi.1 | |- ( E. x ph -> A. x ph ) |
|
Assertion | nfi | |- F/ x ph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfi.1 | |- ( E. x ph -> A. x ph ) |
|
2 | df-nf | |- ( F/ x ph <-> ( E. x ph -> A. x ph ) ) |
|
3 | 1 2 | mpbir | |- F/ x ph |