Metamath Proof Explorer


Theorem nfi

Description: Deduce that x is not free in ph from the definition. (Contributed by Wolf Lammen, 15-Sep-2021)

Ref Expression
Hypothesis nfi.1
|- ( E. x ph -> A. x ph )
Assertion nfi
|- F/ x ph

Proof

Step Hyp Ref Expression
1 nfi.1
 |-  ( E. x ph -> A. x ph )
2 df-nf
 |-  ( F/ x ph <-> ( E. x ph -> A. x ph ) )
3 1 2 mpbir
 |-  F/ x ph