Description: If a class is not finite, then it contains at least one element. (Contributed by Alexander van der Vekens, 12-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfielex | |- ( -. A e. Fin -> E. x x e. A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0fi | |- (/) e. Fin | |
| 2 | eleq1 | |- ( A = (/) -> ( A e. Fin <-> (/) e. Fin ) ) | |
| 3 | 1 2 | mpbiri | |- ( A = (/) -> A e. Fin ) | 
| 4 | 3 | con3i | |- ( -. A e. Fin -> -. A = (/) ) | 
| 5 | neq0 | |- ( -. A = (/) <-> E. x x e. A ) | |
| 6 | 4 5 | sylib | |- ( -. A e. Fin -> E. x x e. A ) |