Step |
Hyp |
Ref |
Expression |
1 |
|
nfifd.2 |
|- ( ph -> F/ x ps ) |
2 |
|
nfifd.3 |
|- ( ph -> F/_ x A ) |
3 |
|
nfifd.4 |
|- ( ph -> F/_ x B ) |
4 |
|
dfif2 |
|- if ( ps , A , B ) = { y | ( ( y e. B -> ps ) -> ( y e. A /\ ps ) ) } |
5 |
|
nfv |
|- F/ y ph |
6 |
3
|
nfcrd |
|- ( ph -> F/ x y e. B ) |
7 |
6 1
|
nfimd |
|- ( ph -> F/ x ( y e. B -> ps ) ) |
8 |
2
|
nfcrd |
|- ( ph -> F/ x y e. A ) |
9 |
8 1
|
nfand |
|- ( ph -> F/ x ( y e. A /\ ps ) ) |
10 |
7 9
|
nfimd |
|- ( ph -> F/ x ( ( y e. B -> ps ) -> ( y e. A /\ ps ) ) ) |
11 |
5 10
|
nfabdw |
|- ( ph -> F/_ x { y | ( ( y e. B -> ps ) -> ( y e. A /\ ps ) ) } ) |
12 |
4 11
|
nfcxfrd |
|- ( ph -> F/_ x if ( ps , A , B ) ) |