Metamath Proof Explorer


Theorem nfiin

Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014) Add disjoint variable condition to avoid ax-13 . See nfiing for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypotheses nfiun.1
|- F/_ y A
nfiun.2
|- F/_ y B
Assertion nfiin
|- F/_ y |^|_ x e. A B

Proof

Step Hyp Ref Expression
1 nfiun.1
 |-  F/_ y A
2 nfiun.2
 |-  F/_ y B
3 df-iin
 |-  |^|_ x e. A B = { z | A. x e. A z e. B }
4 2 nfcri
 |-  F/ y z e. B
5 1 4 nfralw
 |-  F/ y A. x e. A z e. B
6 5 nfab
 |-  F/_ y { z | A. x e. A z e. B }
7 3 6 nfcxfr
 |-  F/_ y |^|_ x e. A B