Metamath Proof Explorer


Theorem nfiing

Description: Bound-variable hypothesis builder for indexed intersection. Usage of this theorem is discouraged because it depends on ax-13 . See nfiin for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by Mario Carneiro, 25-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses nfiung.1
|- F/_ y A
nfiung.2
|- F/_ y B
Assertion nfiing
|- F/_ y |^|_ x e. A B

Proof

Step Hyp Ref Expression
1 nfiung.1
 |-  F/_ y A
2 nfiung.2
 |-  F/_ y B
3 df-iin
 |-  |^|_ x e. A B = { z | A. x e. A z e. B }
4 2 nfcri
 |-  F/ y z e. B
5 1 4 nfral
 |-  F/ y A. x e. A z e. B
6 5 nfabg
 |-  F/_ y { z | A. x e. A z e. B }
7 3 6 nfcxfr
 |-  F/_ y |^|_ x e. A B