Description: The size of any infinite set is always greater than or equal to the size of any set. (Contributed by AV, 13-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | nfile | |- ( ( A e. V /\ B e. W /\ -. B e. Fin ) -> ( # ` A ) <_ ( # ` B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashxrcl | |- ( A e. V -> ( # ` A ) e. RR* ) |
|
2 | pnfge | |- ( ( # ` A ) e. RR* -> ( # ` A ) <_ +oo ) |
|
3 | 1 2 | syl | |- ( A e. V -> ( # ` A ) <_ +oo ) |
4 | 3 | 3ad2ant1 | |- ( ( A e. V /\ B e. W /\ -. B e. Fin ) -> ( # ` A ) <_ +oo ) |
5 | hashinf | |- ( ( B e. W /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
|
6 | 5 | 3adant1 | |- ( ( A e. V /\ B e. W /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
7 | 4 6 | breqtrrd | |- ( ( A e. V /\ B e. W /\ -. B e. Fin ) -> ( # ` A ) <_ ( # ` B ) ) |