Metamath Proof Explorer


Theorem nfile

Description: The size of any infinite set is always greater than or equal to the size of any set. (Contributed by AV, 13-Nov-2020)

Ref Expression
Assertion nfile
|- ( ( A e. V /\ B e. W /\ -. B e. Fin ) -> ( # ` A ) <_ ( # ` B ) )

Proof

Step Hyp Ref Expression
1 hashxrcl
 |-  ( A e. V -> ( # ` A ) e. RR* )
2 pnfge
 |-  ( ( # ` A ) e. RR* -> ( # ` A ) <_ +oo )
3 1 2 syl
 |-  ( A e. V -> ( # ` A ) <_ +oo )
4 3 3ad2ant1
 |-  ( ( A e. V /\ B e. W /\ -. B e. Fin ) -> ( # ` A ) <_ +oo )
5 hashinf
 |-  ( ( B e. W /\ -. B e. Fin ) -> ( # ` B ) = +oo )
6 5 3adant1
 |-  ( ( A e. V /\ B e. W /\ -. B e. Fin ) -> ( # ` B ) = +oo )
7 4 6 breqtrrd
 |-  ( ( A e. V /\ B e. W /\ -. B e. Fin ) -> ( # ` A ) <_ ( # ` B ) )