Step |
Hyp |
Ref |
Expression |
1 |
|
nfim1.1 |
|- F/ x ph |
2 |
|
nfim1.2 |
|- ( ph -> F/ x ps ) |
3 |
|
nf3 |
|- ( F/ x ph <-> ( A. x ph \/ A. x -. ph ) ) |
4 |
1 3
|
mpbi |
|- ( A. x ph \/ A. x -. ph ) |
5 |
|
nftht |
|- ( A. x ph -> F/ x ph ) |
6 |
2
|
sps |
|- ( A. x ph -> F/ x ps ) |
7 |
5 6
|
nfimd |
|- ( A. x ph -> F/ x ( ph -> ps ) ) |
8 |
|
pm2.21 |
|- ( -. ph -> ( ph -> ps ) ) |
9 |
8
|
alimi |
|- ( A. x -. ph -> A. x ( ph -> ps ) ) |
10 |
|
nftht |
|- ( A. x ( ph -> ps ) -> F/ x ( ph -> ps ) ) |
11 |
9 10
|
syl |
|- ( A. x -. ph -> F/ x ( ph -> ps ) ) |
12 |
7 11
|
jaoi |
|- ( ( A. x ph \/ A. x -. ph ) -> F/ x ( ph -> ps ) ) |
13 |
4 12
|
ax-mp |
|- F/ x ( ph -> ps ) |