Metamath Proof Explorer


Theorem nfin

Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Hypotheses nfin.1
|- F/_ x A
nfin.2
|- F/_ x B
Assertion nfin
|- F/_ x ( A i^i B )

Proof

Step Hyp Ref Expression
1 nfin.1
 |-  F/_ x A
2 nfin.2
 |-  F/_ x B
3 dfin5
 |-  ( A i^i B ) = { y e. A | y e. B }
4 2 nfcri
 |-  F/ x y e. B
5 4 1 nfrabw
 |-  F/_ x { y e. A | y e. B }
6 3 5 nfcxfr
 |-  F/_ x ( A i^i B )