Metamath Proof Explorer


Theorem nfinOLD

Description: Obsolete version of nfin as of 14-May-2025. (Contributed by NM, 15-Sep-2003) (Revised by Mario Carneiro, 14-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nfin.1
|- F/_ x A
nfin.2
|- F/_ x B
Assertion nfinOLD
|- F/_ x ( A i^i B )

Proof

Step Hyp Ref Expression
1 nfin.1
 |-  F/_ x A
2 nfin.2
 |-  F/_ x B
3 dfin5
 |-  ( A i^i B ) = { y e. A | y e. B }
4 2 nfcri
 |-  F/ x y e. B
5 4 1 nfrabw
 |-  F/_ x { y e. A | y e. B }
6 3 5 nfcxfr
 |-  F/_ x ( A i^i B )