Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfinf.1 | |- F/_ x A |
|
nfinf.2 | |- F/_ x B |
||
nfinf.3 | |- F/_ x R |
||
Assertion | nfinf | |- F/_ x inf ( A , B , R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfinf.1 | |- F/_ x A |
|
2 | nfinf.2 | |- F/_ x B |
|
3 | nfinf.3 | |- F/_ x R |
|
4 | df-inf | |- inf ( A , B , R ) = sup ( A , B , `' R ) |
|
5 | 3 | nfcnv | |- F/_ x `' R |
6 | 1 2 5 | nfsup | |- F/_ x sup ( A , B , `' R ) |
7 | 4 6 | nfcxfr | |- F/_ x inf ( A , B , R ) |