Metamath Proof Explorer


Theorem nfinf

Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypotheses nfinf.1
|- F/_ x A
nfinf.2
|- F/_ x B
nfinf.3
|- F/_ x R
Assertion nfinf
|- F/_ x inf ( A , B , R )

Proof

Step Hyp Ref Expression
1 nfinf.1
 |-  F/_ x A
2 nfinf.2
 |-  F/_ x B
3 nfinf.3
 |-  F/_ x R
4 df-inf
 |-  inf ( A , B , R ) = sup ( A , B , `' R )
5 3 nfcnv
 |-  F/_ x `' R
6 1 2 5 nfsup
 |-  F/_ x sup ( A , B , `' R )
7 4 6 nfcxfr
 |-  F/_ x inf ( A , B , R )