| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfiso.1 |
|- F/_ x H |
| 2 |
|
nfiso.2 |
|- F/_ x R |
| 3 |
|
nfiso.3 |
|- F/_ x S |
| 4 |
|
nfiso.4 |
|- F/_ x A |
| 5 |
|
nfiso.5 |
|- F/_ x B |
| 6 |
|
df-isom |
|- ( H Isom R , S ( A , B ) <-> ( H : A -1-1-onto-> B /\ A. y e. A A. z e. A ( y R z <-> ( H ` y ) S ( H ` z ) ) ) ) |
| 7 |
1 4 5
|
nff1o |
|- F/ x H : A -1-1-onto-> B |
| 8 |
|
nfcv |
|- F/_ x y |
| 9 |
|
nfcv |
|- F/_ x z |
| 10 |
8 2 9
|
nfbr |
|- F/ x y R z |
| 11 |
1 8
|
nffv |
|- F/_ x ( H ` y ) |
| 12 |
1 9
|
nffv |
|- F/_ x ( H ` z ) |
| 13 |
11 3 12
|
nfbr |
|- F/ x ( H ` y ) S ( H ` z ) |
| 14 |
10 13
|
nfbi |
|- F/ x ( y R z <-> ( H ` y ) S ( H ` z ) ) |
| 15 |
4 14
|
nfralw |
|- F/ x A. z e. A ( y R z <-> ( H ` y ) S ( H ` z ) ) |
| 16 |
4 15
|
nfralw |
|- F/ x A. y e. A A. z e. A ( y R z <-> ( H ` y ) S ( H ` z ) ) |
| 17 |
7 16
|
nfan |
|- F/ x ( H : A -1-1-onto-> B /\ A. y e. A A. z e. A ( y R z <-> ( H ` y ) S ( H ` z ) ) ) |
| 18 |
6 17
|
nfxfr |
|- F/ x H Isom R , S ( A , B ) |