Step |
Hyp |
Ref |
Expression |
1 |
|
nfitg.1 |
|- F/_ y A |
2 |
|
nfitg.2 |
|- F/_ y B |
3 |
|
eqid |
|- ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) |
4 |
3
|
dfitg |
|- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
5 |
|
nfcv |
|- F/_ y ( 0 ... 3 ) |
6 |
|
nfcv |
|- F/_ y ( _i ^ k ) |
7 |
|
nfcv |
|- F/_ y x. |
8 |
|
nfcv |
|- F/_ y S.2 |
9 |
|
nfcv |
|- F/_ y RR |
10 |
1
|
nfcri |
|- F/ y x e. A |
11 |
|
nfcv |
|- F/_ y 0 |
12 |
|
nfcv |
|- F/_ y <_ |
13 |
|
nfcv |
|- F/_ y Re |
14 |
|
nfcv |
|- F/_ y / |
15 |
2 14 6
|
nfov |
|- F/_ y ( B / ( _i ^ k ) ) |
16 |
13 15
|
nffv |
|- F/_ y ( Re ` ( B / ( _i ^ k ) ) ) |
17 |
11 12 16
|
nfbr |
|- F/ y 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) |
18 |
10 17
|
nfan |
|- F/ y ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) |
19 |
18 16 11
|
nfif |
|- F/_ y if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) |
20 |
9 19
|
nfmpt |
|- F/_ y ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) |
21 |
8 20
|
nffv |
|- F/_ y ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) |
22 |
6 7 21
|
nfov |
|- F/_ y ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
23 |
5 22
|
nfsum |
|- F/_ y sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
24 |
4 23
|
nfcxfr |
|- F/_ y S. A B _d x |