Step |
Hyp |
Ref |
Expression |
1 |
|
df-itg |
|- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / z ]_ if ( ( x e. A /\ 0 <_ z ) , z , 0 ) ) ) ) |
2 |
|
nfcv |
|- F/_ x ( 0 ... 3 ) |
3 |
|
nfcv |
|- F/_ x ( _i ^ k ) |
4 |
|
nfcv |
|- F/_ x x. |
5 |
|
nfcv |
|- F/_ x S.2 |
6 |
|
nfmpt1 |
|- F/_ x ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / z ]_ if ( ( x e. A /\ 0 <_ z ) , z , 0 ) ) |
7 |
5 6
|
nffv |
|- F/_ x ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / z ]_ if ( ( x e. A /\ 0 <_ z ) , z , 0 ) ) ) |
8 |
3 4 7
|
nfov |
|- F/_ x ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / z ]_ if ( ( x e. A /\ 0 <_ z ) , z , 0 ) ) ) ) |
9 |
2 8
|
nfsum |
|- F/_ x sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / z ]_ if ( ( x e. A /\ 0 <_ z ) , z , 0 ) ) ) ) |
10 |
1 9
|
nfcxfr |
|- F/_ x S. A B _d x |